GlnR Negatively Regulates the Transcription of the Alanine Dehydrogenase Encoding Gene ald in Amycolatopsis mediterranei U32 under Nitrogen Limited Conditions via Specific Binding to Its Major Transcription Initiation Site
نویسندگان
چکیده
Ammonium assimilation is catalyzed by two enzymatic pathways, i.e., glutamine synthetase/glutamate synthase (GS/GOGAT) and alanine dehydrogenase (AlaDH) in Amycolatopsis mediterranei U32. Under nitrogen-rich conditions, the AlaDH pathway is the major route for ammonium assimilation, while the GS/GOGAT pathway takes over when the extracellular nitrogen supply is limited. The global nitrogen regulator GlnR was previously characterized to activate the transcription of the GS encoding gene glnA in response to nitrogen limitation and is demonstrated in this study as a repressor for the transcription of the AlaDH encoding gene ald, whose regulation is consistent with the switch of the ammonium assimilation pathways from AlaDH to GS/GOGAT responding to nitrogen limitation. Three transcription initiation sites (TISs) of ald were determined with primer extension assay, among which transcription from aldP2 contributed the major transcripts under nitrogen-rich conditions but was repressed to an undetectable level in response to nitrogen limitation. Through DNase I footprinting assay, two separate regions were found to be protected by GlnR within ald promoter, within which three GlnR binding sites (a1, b1 sites in region I and a2 site in region II) were defined. Interestingly, the major TIS aldP2 is located in the middle of a2 site within region II. Therefore, one may easily conclude that GlnR represses the transcription of ald via specific binding to the GlnR binding sites, which obviously blocks the transcription initiation from aldP2 and therefore reduces ald transcripts.
منابع مشابه
Three of four GlnR binding sites are essential for GlnR-mediated activation of transcription of the Amycolatopsis mediterranei nas operon.
In Amycolatopsis mediterranei U32, genes responsible for nitrate assimilation formed one operon, nasACKBDEF, whose transcription is induced by the addition of nitrate. Here, we characterized GlnR as a direct transcriptional activator for the nas operon. The GlnR-protected DNA sequences in the promoter region of the nas operon were characterized by DNase I footprinting assay, the previously dedu...
متن کاملBacterial type I glutamine synthetase of the rifamycin SV producing actinomycete, Amycolatopsis mediterranei U32, is the only enzyme responsible for glutamine synthesis under physiological conditions.
The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a ...
متن کاملCloning and Bioinformatics Analysis of the Gene Encoding Transcription Factor MYB44 of Sunflower (Helianthus annuus L.) under Salt Stress Conditions
Sunflower oilseeds (Helianthus annuus L.) are widely used around the world. Soil salinity negatively affects many morphological and physiological traits of sunflowers. Oil seed sunflower line tolerant to salinity stress (AS5305) was planted in normal and salinity stress conditions in a completely randomized design with two biological replications in a controlled environment. Salinity was applie...
متن کاملRhizophagus irregularis regulates antioxidant activity and gene expression under cadmium toxicity in Medicago sativa
Cadmium (Cd) is a phytotoxic heavy metal (HM) that can induce generation of reactive oxygen species (ROS). Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators that help to mitigate HM-derived oxidative stress. The objective of this study was to assess AM fungus Rhizophagus irregularis on changes in enzymatic activity and transcription of antioxidants of Medicago sativa to Cd s...
متن کاملA preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq
BACKGROUND Rifamycin is an important antibiotic for the treatment of infectious disease caused by Mycobacteria tuberculosis. It was found that in Amycolatopsis mediterranei U32, an industrial producer for rifamycin SV, supplementation of nitrate into the medium remarkably stimulated the yield of rifamycin SV. However, the molecular mechanism of this nitrate-mediated stimulation remains unknown....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014